Contract Architecture & Patterns

Technical Implementation Guide

Overview

This documentation outlines the implementation of a real-world asset tokenization system on Cardano, utilizing
the Agora protocol for governance. The system enables the creation of fractionalized ownership of physical
assets through secure smart contracts, with built-in governance mechanisms for collective decision-making.

The implementation combines vault management for asset handling, Agora'’s three-phase governance system,
token policies for both fractional ownership and governance rights, and managed contribution windows. All
components work together to create a secure, compliant, and flexible tokenization platform.

File Structure

plutus/

— core/

| }— VaultFactory.hs # Creates vault instances

| }— VaultRegistry.hs # Global vault tracking

| }— FractionalizedVault.hs # Core vault functionality

| — Vaultvalidator.hs # Main validation logic

— agora/

| |— Proposalvalidator.hs # Proposal validation logic

| }— LockPhase.hs # Lock phase implementation
| }— VotingPhase.hs # Voting phase logic

| |— ExecutionPhase.hs # Execution phase handling
| L— ThresholdValidator.hs # Governance thresholds
— tokens/

| }— FractionalPolicy.hs # Fractional token minting

| L— GovernancePolicy.hs # Agora governance token
F— windows/

| — AssetWindowValidator.hs # Asset contribution period

| L— InvestmentWindowValidator.hs # Investment period

— types/

| }— VaultTypes.hs # Core type definitions

| }— AgoraTypes.hs # Agora governance types
| L— WindowTypes.hs # Window related types
— effects/

| |— ProposalEffects.hs # Proposal action execution

| L— RequirementEffects.hs # Requirement modifications

L— utils/
— Validators.hs # Common validation functions

L— Scripts.hs # Script utilities

Core Vault Components

The vault system manages the fundamental asset tokenization functionality.

Vault Factory

Responsible for creating new vault instances with proper initialization:

data VaultParams = VaultParams {
vaultType :: VaultType,
assetTypes :: [AssetType],
settings :: VaultSettings

newtype VaultFactory = VaultFactory {

createVault :: VaultParams -> Contract w s Text Vaultld

mkVaultValidator :: VaultParams -> TypedValidator VaultSchema
mkVaultValidator params = mkTypedValidator @VaultSchema
($$(PlutusTx.compile [|| validateVault ||])
“PlutusTx.applyCode™ PlutusTx.liftCode params)
$$(PlutusTx.compile [|| wrap ||1)
where

wrap = wrapValidator @VaultDatum @VaultRedeemer

Vault Registry

Maintains the global state of all vaults:

data RegistryDatum = RegistryDatum {
vaults :: Map Vaultld Vaultinfo,

totalVaults :: Integer

data Vaultinfo = Vaultinfo {
vaultState :: VaultState,

assetlds :: [Assetld],

tokenPolicy :: CurrencySymbol

Fractionalized Vault

Manages the core vault operations and state:

data VaultDatum = VaultDatum {
assets :: [AssetDetails],
fractionalization :: FractionalizationParams,

state :: VaultState

data AssetDetails = AssetDetails {
assetld :: Assetld,
amount :: Integer,

locked :: Bool

Agora Governance Integration

The Agora protocol provides a structured governance system with three distinct phases.

Core Governance Structures

data GovernanceSettings = GovernanceSettings {

creationThreshold :: Percentage, -- Min FT % to create proposal
startThreshold :: Percentage, -- Min FT % to start voting
voteThreshold :: Percentage, -- Min staked FT for valid vote

executionThreshold :: Percentage, -- Min votes for execution
cosigningThreshold :: Percentage, -- Min FT for cosigning

lockDuration :: POSIXTime -- Lock phase duration

data ProposalPhase =
LockPhase
| VotingPhase

| ExecutionPhase

Proposal Management

data ProposalParams = ProposalParams {
description :: Text,
votingDuration :: POSIXTime,
lockDuration :: POSIXTime,
executionDuration :: POSIXTime,
requiredCosigners :: [PubKeyHash],
effects :: [ProposalEffect]

createProposal :: Vaultld -> ProposalParams -> Contract w s Text Proposalld
createProposal vaultld params = do
validateCreatorStake
proposalld <- submitTx $ mustPayToScript proposalValidator (proposalDatum params)
emitEvent $ ProposalCreated proposalld

pure proposalld

Phase Transitions

data PhaseTransition =
StartVoting
| StartLockPhase

| StartExecution

validatePhaseTransition :: ProposalDatum -> PhaseTransition -> ScriptContext -> Bool
validatePhaseTransition datum transition ctx = case transition of
StartVoting ->
meetStartThreshold &&
timeToVote
StartLockPhase ->
votingComplete &&
sufficientVotes
StartExecution ->
lockPhaseComplete &&

cosignersSigned

Token Management

Governance Token

data GovernanceToken = GovernanceToken {
policyld :: CurrencySymbol,
tokenName :: TokenName,

totalSupply :: Integer

validateGovernanceToken :: AssetParams -> GovernanceToken -> ScriptContext -> Bool
validateGovernanceToken params token ctx =

correctSupply &&

correctDistribution &&

hasGovernanceMetadata

Fractional Token

data FractionalTokenParams = FractionalTokenParams {
tokenName :: TokenName,
decimals :: Integer,

totalSupply :: Integer

mkTokenPolicy :: FractionalTokenParams -> MintingPolicy
mkTokenPolicy params = mkMintingPolicyScript
($$(PlutusTx.compile [|| validateMinting |[])
*PlutusTx.applyCode™ PlutusTx.liftCode params)

Window Management

Asset Window

data WindowDatum = WindowDatum {
windowsStart :: POSIXTime,
windowEnd :: POSIXTime,

contributions :: Map Assetld Contribution

data WindowRedeemer =

Contribute AssetContribution |

CloseWindow

Types System
Vault Types

data VaultState =
Draft
| Active
| Locked

| Terminated

data VaultAction =
Initialize VaultParams
| AddAsset AssetDetails
| RemoveAsset Assetld
| LockAssets

| UnlockAssets

Governance Types

data ProposalState =
Pending
| VotingActive
| Locked
| Executed

| Failed

data ProposalAction =
CreateProposal ProposalParams
| CastVote VoteDetails
| ExecuteProposal

| CancelProposal

Implementation Notes

Best Practices

The implementation adheres to several key principles:

e Strong typing ensures that invalid states are unrepresentable in the type system. Every operation has
explicit type definitions that capture its requirements and constraints.

¢ Explicit datum and redeemer structures clearly define the state transitions and valid operations. Each
validator precisely specifies what constitutes a valid state change.

e The UTXO model is used efficiently, with careful consideration given to datum design and state
management. This helps minimize resource usage and transaction costs.

¢ Validator patterns follow established security practices, with comprehensive checks and clear error
messages. Multiple validation layers ensure system integrity.

Security Considerations

The implementation includes several security measures:

1. Multiple validation layers verify all operations

2. Strong typing prevents invalid state transitions

3. Explicit access control through stake-based governance
4. Comprehensive audit trail of all operations

5. Time-locked phases prevent rushed decisions

Integration Points

The system's main integration points are:

1. Asset registration and verification

2. Governance token distribution

3. Proposal creation and execution

4. Time Window management and transitions

5. Effect implementation and validation

Revision #5
Created 27 November 2024 16:15:18 by Aric Fedida
Updated 28 November 2024 00:49:30 by Aric Fedida

