
Purpose: Technical specification and documentation of all blockchain-related smart contracts and their
interactions.

Key Contents:

Smart contract architecture and design patterns
Detailed function specifications and parameters
Contract deployment procedures and addresses
Security considerations and audit findings
Gas optimization strategies
Contract upgradeability design
Cross-contract interaction patterns

Contract Architecture & Patterns

Some useful implementation examples

Contract Interfaces & Functions

Security & Audits

Gas & Optimization

Deployment & Upgradeability

Cross-Contract Integration

Testing & Verification

Story: Commercial Real Estate RWA

Smart Contracts

This documentation outlines the implementation of a real-world asset tokenization system on Cardano, utilizing
the Agora protocol for governance. The system enables the creation of fractionalized ownership of physical
assets through secure smart contracts, with built-in governance mechanisms for collective decision-making.

The implementation combines vault management for asset handling, Agora's three-phase governance system,
token policies for both fractional ownership and governance rights, and managed contribution windows. All
components work together to create a secure, compliant, and flexible tokenization platform.

Contract Architecture & Patterns

Technical Implementation Guide

Overview

File Structure

plutus/
├── core/
│ ├── VaultFactory.hs # Creates vault instances
│ ├── VaultRegistry.hs # Global vault tracking
│ ├── FractionalizedVault.hs # Core vault functionality
│ └── VaultValidator.hs # Main validation logic
├── agora/
│ ├── ProposalValidator.hs # Proposal validation logic
│ ├── LockPhase.hs # Lock phase implementation
│ ├── VotingPhase.hs # Voting phase logic
│ ├── ExecutionPhase.hs # Execution phase handling
│ └── ThresholdValidator.hs # Governance thresholds
├── tokens/
│ ├── FractionalPolicy.hs # Fractional token minting
│ └── GovernancePolicy.hs # Agora governance token
├── windows/
│ ├── AssetWindowValidator.hs # Asset contribution period
│ └── InvestmentWindowValidator.hs # Investment period
├── types/
│ ├── VaultTypes.hs # Core type definitions
│ ├── AgoraTypes.hs # Agora governance types
│ └── WindowTypes.hs # Window related types
├── effects/
│ ├── ProposalEffects.hs # Proposal action execution
│ └── RequirementEffects.hs # Requirement modifications
└── utils/

The vault system manages the fundamental asset tokenization functionality.

Responsible for creating new vault instances with proper initialization:

Maintains the global state of all vaults:

 ├── Validators.hs # Common validation functions
 └── Scripts.hs # Script utilities

Core Vault Components

Vault Factory

data VaultParams = VaultParams {
 vaultType :: VaultType,
 assetTypes :: [AssetType],
 settings :: VaultSettings
}

newtype VaultFactory = VaultFactory {
 createVault :: VaultParams -> Contract w s Text VaultId
}

mkVaultValidator :: VaultParams -> TypedValidator VaultSchema
mkVaultValidator params = mkTypedValidator @VaultSchema
 ($$(PlutusTx.compile [|| validateVault ||])
 `PlutusTx.applyCode` PlutusTx.liftCode params)
 $$(PlutusTx.compile [|| wrap ||])
 where
 wrap = wrapValidator @VaultDatum @VaultRedeemer

Vault Registry

data RegistryDatum = RegistryDatum {
 vaults :: Map VaultId VaultInfo,
 totalVaults :: Integer
}

data VaultInfo = VaultInfo {
 vaultState :: VaultState,
 assetIds :: [AssetId],
 tokenPolicy :: CurrencySymbol

Manages the core vault operations and state:

The Agora protocol provides a structured governance system with three distinct phases.

}

Fractionalized Vault

data VaultDatum = VaultDatum {
 assets :: [AssetDetails],
 fractionalization :: FractionalizationParams,
 state :: VaultState
}

data AssetDetails = AssetDetails {
 assetId :: AssetId,
 amount :: Integer,
 locked :: Bool
}

Agora Governance Integration

Core Governance Structures

data GovernanceSettings = GovernanceSettings {
 creationThreshold :: Percentage, -- Min FT % to create proposal
 startThreshold :: Percentage, -- Min FT % to start voting
 voteThreshold :: Percentage, -- Min staked FT for valid vote
 executionThreshold :: Percentage, -- Min votes for execution
 cosigningThreshold :: Percentage, -- Min FT for cosigning
 lockDuration :: POSIXTime -- Lock phase duration
}

data ProposalPhase =
 LockPhase
 | VotingPhase
 | ExecutionPhase

Proposal Management

data ProposalParams = ProposalParams {
 description :: Text,
 votingDuration :: POSIXTime,
 lockDuration :: POSIXTime,
 executionDuration :: POSIXTime,
 requiredCosigners :: [PubKeyHash],
 effects :: [ProposalEffect]
}

createProposal :: VaultId -> ProposalParams -> Contract w s Text ProposalId
createProposal vaultId params = do
 validateCreatorStake
 proposalId <- submitTx $ mustPayToScript proposalValidator (proposalDatum params)
 emitEvent $ ProposalCreated proposalId
 pure proposalId

Phase Transitions

data PhaseTransition =
 StartVoting
 | StartLockPhase
 | StartExecution

validatePhaseTransition :: ProposalDatum -> PhaseTransition -> ScriptContext -> Bool
validatePhaseTransition datum transition ctx = case transition of
 StartVoting ->
 meetStartThreshold &&
 timeToVote
 StartLockPhase ->
 votingComplete &&
 sufficientVotes
 StartExecution ->
 lockPhaseComplete &&
 cosignersSigned

Token Management

Governance Token

data GovernanceToken = GovernanceToken {
 policyId :: CurrencySymbol,
 tokenName :: TokenName,
 totalSupply :: Integer
}

validateGovernanceToken :: AssetParams -> GovernanceToken -> ScriptContext -> Bool
validateGovernanceToken params token ctx =
 correctSupply &&
 correctDistribution &&
 hasGovernanceMetadata

Fractional Token

data FractionalTokenParams = FractionalTokenParams {
 tokenName :: TokenName,
 decimals :: Integer,
 totalSupply :: Integer
}

mkTokenPolicy :: FractionalTokenParams -> MintingPolicy
mkTokenPolicy params = mkMintingPolicyScript
 ($$(PlutusTx.compile [|| validateMinting ||])
 `PlutusTx.applyCode` PlutusTx.liftCode params)

Window Management

Asset Window

data WindowDatum = WindowDatum {
 windowStart :: POSIXTime,
 windowEnd :: POSIXTime,
 contributions :: Map AssetId Contribution
}

data WindowRedeemer =
 Contribute AssetContribution |
 CloseWindow

Types System

The implementation adheres to several key principles:

Strong typing ensures that invalid states are unrepresentable in the type system. Every operation has
explicit type definitions that capture its requirements and constraints.
Explicit datum and redeemer structures clearly define the state transitions and valid operations. Each
validator precisely specifies what constitutes a valid state change.
The UTXO model is used efficiently, with careful consideration given to datum design and state
management. This helps minimize resource usage and transaction costs.

Vault Types

data VaultState =
 Draft
 | Active
 | Locked
 | Terminated

data VaultAction =
 Initialize VaultParams
 | AddAsset AssetDetails
 | RemoveAsset AssetId
 | LockAssets
 | UnlockAssets

Governance Types

data ProposalState =
 Pending
 | VotingActive
 | Locked
 | Executed
 | Failed

data ProposalAction =
 CreateProposal ProposalParams
 | CastVote VoteDetails
 | ExecuteProposal
 | CancelProposal

Implementation Notes

Best Practices

Validator patterns follow established security practices, with comprehensive checks and clear error
messages. Multiple validation layers ensure system integrity.

The implementation includes several security measures:

1. Multiple validation layers verify all operations

2. Strong typing prevents invalid state transitions

3. Explicit access control through stake-based governance

4. Comprehensive audit trail of all operations

5. Time-locked phases prevent rushed decisions

The system's main integration points are:

1. Asset registration and verification

2. Governance token distribution

3. Proposal creation and execution

4. Time Window management and transitions

5. Effect implementation and validation

Security Considerations

Integration Points

1. Core Implementation

2. Asset Journey Examples

3. Phase Transition Scenarios

4. Threshold Calculations

5. Governance Flows

6. Implementation Considerations

Some useful implementation examples

Table of Contents

1. Core Implementation

Base Structure

data RealWorldAsset = RealWorldAsset {
 assetId :: AssetId,
 assetType :: AssetType,
 assetValue :: Integer,
 assetMetadata :: AssetMetadata,
 custodialInfo :: CustodianInfo,
 verificationData :: VerificationInfo,
 requirementSet :: [Requirement]
}

-- Extensible asset types to accommodate any real-world asset
data AssetType =
 ArtPiece ArtDetails
 | RealEstate PropertyDetails
 | PreciousMetals MetalDetails
 | Commodity CommodityDetails
 | CustomAsset CustomDetails

-- Requirement system that handles any type of requirement
data Requirement = Requirement {
 requirementType :: RequirementType,
 description :: Text,

 validationMethod :: ValidationMethod,
 verificationFrequency :: Frequency,
 requirementStatus :: RequirementStatus,
 lastVerified :: Maybe POSIXTime
}

data RequirementType =
 Legal
 | Physical
 | Operational
 | Environmental
 | Financial
 | Custom Text

Agora Governance Integration

data AgoraPhase =
 LockPhase LockPhaseInfo
 | VotingPhase VotingPhaseInfo
 | ExecutionPhase ExecutionPhaseInfo

data GovernanceConfig = GovernanceConfig {
 thresholds :: AgoraThresholds,
 phaseDurations :: PhaseDurations,
 votingPowerStrategy :: VotingStrategy,
 effectValidators :: Map EffectType EffectValidator
}

data AgoraThresholds = AgoraThresholds {
 creation :: Percentage, -- e.g., 5%
 start :: Percentage, -- e.g., 10%
 vote :: Percentage, -- e.g., 15%
 execution :: Percentage, -- e.g., 51%
 cosigning :: Percentage -- e.g., 25%
}

data PhaseDurations = PhaseDurations {
 lockPhaseDuration :: POSIXTime,
 votingPhaseDuration :: POSIXTime,
 executionPhaseDuration :: POSIXTime

}

2. Asset Journey Examples

Example 1: Fine Art Tokenization

-- Picasso painting tokenization example
artExample :: RealWorldAsset
artExample = RealWorldAsset {
 assetId = "art_001",
 assetType = ArtPiece {
 artist = "Pablo Picasso",
 title = "Example Painting",
 year = 1937,
 medium = "Oil on canvas",
 dimensions = Dimensions 349.3 776.6,
 authenticity = [Certificate1, Certificate2]
 },
 assetValue = 10_000_000_000_000, -- 10M ADA
 requirementSet = [
 Requirement {
 requirementType = Physical,
 description = "Temperature control 20-22°C",
 validationMethod = TemperatureSensorValidation,
 verificationFrequency = Hourly,
 requirementStatus = Active
 },
 Requirement {
 requirementType = Legal,
 description = "Insurance coverage",
 validationMethod = InsuranceDocValidation,
 verificationFrequency = Monthly,
 requirementStatus = Active
 }
]
}

-- Art-specific proposal example
proposeMoveToNewGallery :: ProposalParams
proposeMoveToNewGallery = ProposalParams {

 description = "Move artwork to Modern Gallery",
 effect = PhysicalLocationChange {
 newLocation = "Modern Gallery, NY",
 transportMethod = "Specialized Art Transport",
 insuranceCoverage = "Extended Transit Insurance"
 },
 requiredCosigners = [
 galleryCurator,
 insuranceProvider,
 securityProvider
]
}

Example 2: Commodity Batch Management

-- Coffee batch tokenization example
commodityExample :: RealWorldAsset
commodityExample = RealWorldAsset {
 assetId = "coffee_batch_001",
 assetType = Commodity {
 type = "Arabica Coffee",
 grade = "Premium",
 origin = "Colombia",
 harvest = "2024",
 quantity = MetricTons 100
 },
 assetValue = 1_000_000_000_000, -- 1M ADA
 requirementSet = [
 Requirement {
 requirementType = Environmental,
 description = "Storage humidity 60-65%",
 validationMethod = HumiditySensorValidation,
 verificationFrequency = Daily,
 requirementStatus = Active
 }
]
}

-- Storage condition change proposal
proposeStorageChange :: ProposalParams

proposeStorageChange = ProposalParams {
 description = "Update storage conditions",
 effect = StorageConditionChange {
 newHumidity = Percentage 62,
 newTemperature = Celsius 20,
 implementation = "Automated climate control"
 },
 requiredCosigners = [
 warehouseManager,
 qualityInspector
]
}

3. Phase Transition Scenarios

Lock Phase Implementation

data LockPhaseInfo = LockPhaseInfo {
 startTime :: POSIXTime,
 endTime :: POSIXTime,
 requiredStake :: Integer,
 currentStake :: Integer,
 lockedTokens :: Map PubKeyHash Integer
}

startLockPhase :: ProposalId -> Contract w s Text ()
startLockPhase proposalId = do
 proposal <- getProposal proposalId
 currentTime <- getCurrentTime

 let lockInfo = LockPhaseInfo {
 startTime = currentTime,
 endTime = currentTime + proposal.lockDuration,
 requiredStake = calculateRequiredStake proposal,
 currentStake = 0,
 lockedTokens = Map.empty
 }

 validateLockPhaseStart proposal
 updateProposalPhase proposalId (LockPhase lockInfo)

 emitLockPhaseStarted proposalId

validateLockPhaseStart :: Proposal -> Bool
validateLockPhaseStart proposal =
 hasMinimumCreationStake &&
 notInActivePhase &&
 allRequirementsValid

Voting Phase Implementation

data VotingPhaseInfo = VotingPhaseInfo {
 votes :: Map PubKeyHash Vote,
 totalVotingPower :: Integer,
 usedVotingPower :: Integer,
 voteDistribution :: VoteDistribution
}

data Vote = Vote {
 direction :: VoteDirection,
 power :: Integer,
 timestamp :: POSIXTime,
 metadata :: VoteMetadata
}

startVotingPhase :: ProposalId -> Contract w s Text ()
startVotingPhase proposalId = do
 proposal <- getProposal proposalId

 -- Verify lock phase completion
 unless (isLockPhaseComplete proposal) $
 throwError "Lock phase incomplete"

 -- Verify start threshold
 unless (meetsStartThreshold proposal) $
 throwError "Insufficient stake for voting start"

 let votingInfo = VotingPhaseInfo {
 votes = Map.empty,
 totalVotingPower = calculateTotalPower proposal,
 usedVotingPower = 0,

 voteDistribution = initializeVoteDistribution
 }

 updateProposalPhase proposalId (VotingPhase votingInfo)
 emitVotingPhaseStarted proposalId

4. Threshold Calculations

Practical Examples

-- Example: Art piece worth 10M ADA
calculateThresholds :: AssetValue -> AgoraThresholds
calculateThresholds assetValue = AgoraThresholds {
 creation = Percentage 5, -- 500k ADA to create proposal
 start = Percentage 10, -- 1M ADA to start voting
 vote = Percentage 15, -- 1.5M ADA for valid vote
 execution = Percentage 51, -- 5.1M ADA to execute
 cosigning = Percentage 25 -- 2.5M ADA for cosigning
}

-- Example: Calculating voting power
calculateVotingPower :: TokenAmount -> VotingStrategy -> Integer
calculateVotingPower amount strategy = case strategy of
 Linear ->
 amount
 Quadratic ->
 floor $ sqrt $ fromIntegral amount
 WeightedByTime holdingTime ->
 amount * (1 + (holdingTime `div` 30)) -- Bonus for longer holds

5. Governance Flows

Complete Proposal Lifecycle

data ProposalLifecycle = ProposalLifecycle {
 proposal :: Proposal,
 currentPhase :: AgoraPhase,
 history :: [PhaseTransition],
 votes :: Map PubKeyHash Vote,
 effects :: [Effect],

 status :: ProposalStatus
}

executeProposalLifecycle :: ProposalId -> Contract w s Text ()
executeProposalLifecycle proposalId = do
 -- Initialize proposal
 proposal <- createProposal proposalId

 -- Lock phase
 startLockPhase proposalId
 awaitLockPhaseCompletion proposalId

 -- Voting phase
 startVotingPhase proposalId
 collectVotes proposalId

 -- Execution phase
 validateVotingResults proposalId
 collectCosignatures proposalId
 executeEffects proposalId

6. Implementation Considerations

Security Measures

data SecurityMeasures = SecurityMeasures {
 accessControl :: AccessControl,
 thresholdValidation :: ThresholdValidation,
 timelock :: TimelockConfig,
 emergencyProcedures :: EmergencyProcedures
}

validateSecurityMeasures :: SecurityMeasures -> ScriptContext -> Bool
validateSecurityMeasures measures ctx =
 validateAccess measures.accessControl ctx &&
 validateThresholds measures.thresholdValidation ctx &&
 validateTimelock measures.timelock ctx

Error Handling

This implementation guide demonstrates how the Agora governance protocol can be used effectively with various
real-world assets, providing both technical implementation details and practical examples that engineers can
follow.

data GovernanceError =
 InsufficientStake Text
 | InvalidPhaseTransition Text
 | ThresholdNotMet Text
 | ValidationFailed Text
 | TimelockNotExpired Text

handleGovernanceError :: GovernanceError -> Contract w s Text a
handleGovernanceError = \case
 InsufficientStake msg ->
 logError $ "Stake requirement not met: " <> msg
 InvalidPhaseTransition msg ->
 logError $ "Invalid phase transition: " <> msg
 ThresholdNotMet msg ->
 logError $ "Threshold not met: " <> msg
 ValidationFailed msg ->
 logError $ "Validation failed: " <> msg
 TimelockNotExpired msg ->
 logError $ "Timelock not expired: " <> msg

Contract Interfaces & Functions

Security & Audits

Gas & Optimization

Deployment & Upgradeability

Cross-Contract Integration

Testing & Verification

Testing & Verification

This document outlines how L4VA enables the tokenization, aggregation, and fractionalization of commercial real
estate assets on the Cardano blockchain, along with the specific transaction types and smart contracts needed
for each step of implementation.

A commercial real estate investment firm, RealX Holdings, identified an opportunity to increase liquidity and
accessibility in the traditionally illiquid commercial real estate market. They decided to use L4VA to tokenize their
portfolio of commercial properties and create fractionalized ownership tokens that could be traded on the
blockchain.

RealX Holdings had several LLCs, each holding different commercial properties (office buildings, retail spaces,
and industrial warehouses). They tokenized these holding companies by issuing share classes representing
percentage ownership of each LLC. These share classes were then minted into NFTs on the Cardano
blockchain.

Using L4VA, RealX created specialized vaults for different asset categories:

1. Office Space Vault: Aggregating tokens from office building LLCs

2. Retail Space Vault: Aggregating tokens from retail property LLCs

3. Industrial Space Vault: Aggregating tokens from industrial warehouse LLCs

Each vault was designed to manage the aggregated tokens and enable fractionalized ownership through fungible
tokens (FTs).

Investors were able to purchase fractionalized tokens from any of the vaults, gaining exposure to specific
commercial real estate sectors without needing to buy entire properties. Each investor could contribute any
amount of ADA, making commercial real estate investment accessible to a much wider audience.

Story: Commercial Real Estate RWA

Real World Assets (RWA) on Cardano
Blockchain with L4VA

The Story

Introduction

Holding Company Tokenization

Vault Creation

Investment Round

Diversified Portfolio Creation

A financial influencer named Charlie saw an opportunity to create a more diversified commercial real estate
portfolio. Charlie created a new vault on L4VA that aggregated tokens from all three sector-specific vaults (Office,
Retail, and Industrial) into a "Commercial Real Estate Index" vault. This vault issued its own tokens representing
exposure to the entire commercial real estate market, reducing risk through diversification.

Each vault implemented strictly defined governance systems allowing token holders to vote on a specific set of
permitted actions:

Permitted Governance Actions:

1. Asset Sales: Proposals to list or sell vault assets at market price to generate liquidity or
rebalance the portfolio.

2. Asset Acquisition: Proposals to purchase new assets that match the vault's whitelist using
available ADA in the vault.

3. Asset Staking: Proposals to stake assets to generate additional yield for the vault.

4. Distribution to Token Holders: Proposals to distribute fungible token assets (including
ADA) to fractional token holders through an asset claim and token burn process.

5. Vault Mergers (v2): Proposals to merge compatible vaults, requiring approval from both
vaults' token holders, creating a new vault with combined assets and a whitelist restricted to
the sum of the original whitelists.

Prohibited Governance Actions: To prevent potential fraud and maintain vault integrity, certain operations were
explicitly prohibited by the smart contract:

1. Direct External Transfers: The governance system prevented proposals to send ADA or
fungible token assets from the vault to specific external addresses.

2. Whitelist Expansion: Vaults could not expand their asset whitelist beyond their initial
scope without a full protocol upgrade.

3. Non-Market-Based Transactions: All asset sales and purchases required verifiable market
price validation.

This strictly defined governance system ensured that vault operations remained secure, transparent, and aligned
with token holders' interests while preventing potential abuse.

As the commercial properties generated rental income, this revenue flowed into the respective vaults. The
governance system automatically distributed these returns to token holders proportional to their ownership,
creating a steady income stream for investors while maintaining complete transparency.

Governance Decisions

Revenue Distribution

Blockchain Implementation: Transaction Types and
Smart Contracts

Transaction Type: Minting Transaction

Creates NFTs representing LLC share classes
Includes metadata about the commercial property details (location, size, income, valuation)

Smart Contract Required: AssetTokenizationContract (Contract Hash:
479f356943df735488e8f6ce7dd7dd9e757b68b9e01175da42031111)

Mints NFTs with property metadata
Links legal documents to the asset (property deed, LLC operating agreement)
Creates verifiable link between LLC shares and digital tokens

Implementation:

Transaction Type: Minting Transaction

Creates new tokens representing specialized vaults (Office, Retail, Industrial)
Establishes governance parameters and fee structures

Smart Contract Required: VaultContract (Contract Hash:
ac2bb90a5a34ee1a7fe5340b73932132df67afb54d90605be6a8329f)

Creates vault structure with specified parameters
Sets up token acceptance policies (which asset types can be deposited)
Establishes governance rules
Manages fractionalization mechanisms

Implementation:

Transaction Type: Transfer Transaction

Transfers LLC NFTs into appropriate sector vaults
Records ownership provenance

Smart Contract Required: AssetAggregationContract (utilizing VaultContract)

Validates asset type matches vault criteria
Records contribution details and ownership transfer
Updates vault composition

1. LLC Share Tokenization

Required functions from lib-assets.ts
createAsset("commercial_property", ["operating_agreement.pdf", "valuation_report.pdf", "title_deed.pdf"])

2. Vault Creation

deno run --env-file -A create_vault.ts

3. Asset Aggregation

Implementation:

Transaction Type: Minting Transaction

Mints fungible tokens (FTs) representing fractional ownership of the vault
Associates FT supply with vault asset value

Smart Contract Required: FractionalizationContract (part of VaultContract)

Calculates appropriate token supply based on asset values
Enforces proportional ownership rules
Manages token supply updates when assets are added/removed

Implementation:

Transaction Type: Vault Creation + Transfer Transactions

Creates a new vault that accepts tokens from other vaults
Transfers tokens from sector-specific vaults to the diversified vault

Smart Contract Required: MetaVaultContract (extending VaultContract)

Handles vault-of-vaults structure
Manages nested governance rules
Calculates appropriate index token supply based on underlying vault tokens

Implementation:

Transaction Type: Voting Transactions

Records votes from token holders
Enforces voting weight based on token ownership
Executes approved actions within strict constraints

Smart Contract Required: GovernanceContract (part of VaultContract)

Uses getVaultUtxo function from lib.ts
getVaultUtxo(vaultPolicyId, vaultAssetName)

4. Fractionalization

Function from lib.ts to calculate token distributions
assetsToValue(vaultAssets)

5. Diversified Portfolio Creation

Uses multiple functions from lib.ts
generate_assetname_from_txhash_index(metavaultTxHash, outputIndex)

6. Governance Voting

Validates voter eligibility based on token ownership
Enforces voting timeframes
Requires minimum participation thresholds
Validates that proposals match permitted operations
Rejects prohibited operations (e.g., direct transfers to external addresses)
Executes approved decisions automatically

Implementation:

Transaction Type: Distribution Transactions

Creates asset claims for token holders
Requires token burn to claim assets
Distributes assets proportionally to token ownership

Smart Contract Required: DistributionContract (part of VaultContract)

Calculates distributions based on token ownership percentages
Creates secure claim mechanism requiring token burn
Validates distribution timeframes
Executes automatic distributions to token holders
Updates distribution records

Implementation:

Transaction Type: Complex Transaction

Requires approval from both vault governance systems
Creates new vault with combined assets
Burns original vault tokens
Mints new vault tokens for holders from both original vaults

Smart Contract Required: VaultMergerContract (extending VaultContract)

Handles complex multi-vault governance voting
Creates new vault with properly restricted whitelist
Manages asset transfers from original vaults
Calculates fair token distribution in new vault
Ensures continuity of ownership rights

Implementation:

Function from lib.ts to track governance proposals
getUtxos(governanceAddress, minimumStake)

7. Asset Distribution

Asset claim and token burn process
createAssetClaim(vaultId, assetId, distributionAmount) +
burnTokenForClaim(fractionalTokenId, claimId)

8. Vault Merging (v2)

Transaction Type: Collateralization Transactions

Uses vault tokens as collateral for lending platforms
Enables yield farming with vault tokens

Smart Contract Required: DeFiIntegrationContract

Creates compatible interfaces with other DeFi protocols
Manages collateralization ratios and liquidation parameters
Enables automated yield strategies

Implementation:

Implementation for vault merging
proposeVaultMerger(sourceVaultId, targetVaultId, newParams) +
approveVaultMerger(sourceVaultId, targetVaultId, approvalSignature) +
executeVaultMerger(sourceVaultId, targetVaultId, newVaultId)

9. DeFi Integration

Integration with external DeFi protocols
getUtxos(userAddress) + collateralizeAssets(vaultTokens, loanAmount)

L4VA System Architecture Diagram

+---------------------------+ +--------------------------+ +-------------------------+
LLC Holdings (Real World)		Blockchain Tokenization		L4VA Vault System
+---------------------------+ +--------------------------+ +-------------------------+
 | | |
 v v v
+---------------------------+ +---------------------------+ +-------------------------+
- Office Building LLC		- Office Building NFT		- Office Space Vault
- Retail Space LLC	=>	- Retail Space NFT	=>	- Retail Space Vault
- Industrial Warehouse LLC		- Industrial Warehouse NFT		- Industrial Space Vault
+---------------------------+ +---------------------------+ +-------------------------+
 |
 v
 +-------------------------+
 | |
 | Diversified Meta-Vault |
 | |

Step Transaction Type Asset Involved Smart Contract Purpose

LLC Tokenization Minting Commercial Property
NFT

AssetTokenizationContr
act

Create digital
representation of LLC
shares

Vault Creation Minting Vault Token VaultContract Create specialized
vaults for asset
categories

Asset Aggregation Transfer Property NFT ? Vault AssetAggregationContra
ct

Move assets into
appropriate vaults

Fractionalization Minting Fungible Tokens FractionalizationContrac
t

Create tradable
fractional ownership
tokens

Meta-Vault Creation Minting Meta-Vault Token MetaVaultContract Create diversified
portfolio vault

Token Transfer Transfer Vault FT ? Meta-Vault VaultContract Move tokens between
vaults for diversification

Governance Vote Voting Governance Token GovernanceContract Record holder votes on
proposals

Asset Sale Market Sale Vault Asset ? ADA VaultContract Sell assets at market
price

Asset Purchase Market Purchase ADA ? New Asset VaultContract Buy assets from whitelist
at market price

Asset Distribution Claim + Burn Token Burn ? Asset
Claim

DistributionContract Distribute assets to
token holders

Vault Merger Complex Vault A + Vault B ? New
Vault

VaultMergerContract Combine compatible
vaults

This implementation demonstrates how L4VA facilitates the fractionalization, aggregation, and governance of
commercial real estate assets on the Cardano blockchain. The key value propositions include:

 +-------------------------+
 |
 Investors v
 | +--------------------------+
 v | |
+---------------------------+ +--------------------------+ | - Fractional Ownership |
				- Governance Rights
DeFi Applications	<=	Fractionalized Tokens	<=	- Automated Distributions
				- Index Exposure
+---------------------------+ +--------------------------+ | |
 +--------------------------+

Transaction Types and Flow

Implementation Workflow

1. Tokenization: Converting illiquid real estate into tradable digital assets

2. Fractionalization: Breaking down large investments into affordable units

3. Aggregation: Combining multiple assets into thematic vaults

4. Diversification: Creating index-like products across property types

5. Governance: Enabling democratic management of real estate portfolios within strict
security constraints

6. DeFi Integration: Unlocking new financial use cases for real estate assets

By leveraging L4VA, creators with influence and ideas can aggregate large vaults by attracting existing tokenized
asset holders to contribute to vaults with specific configurations that represent an investment theme or strategy.
The creators can then apply utility to their tokens as part of their community or other decentralized applications.

To execute this implementation on the Cardano preprod network, we'll use the Blockfrost API (project ID:
preprodGLOrJOlqUt1HBVbDhBTEh9oq7GVUBszv) and our custom scripts to interact with the smart contracts.

