
Overview

This documentation covers the REST API endpoints required to implement vault creation, asset management,
and governance functionality for the L4VA protocol. The API enables:

1. Vault Formation
Creation of Private, Public, and Semi-Private vaults
Asset contribution during timed windows
Investment handling with Fixed/LBE options

2. Governance
Proposal creation and management
Voting mechanisms
Multi-signature execution flows
Threshold validations

3. Wallet Integration
Wallet connection and session management
Vault association and role management

Getting Started

Vault Formation

Governance

Wallet Integration

Swim Lane Diagram

API Endpoints

1. Obtain API credentials

2. Review authentication requirements

3. Test endpoints in development environment

4. Implement error handling

5. Add real-time updates using WebSocket endpoints

Development: https://api-dev.l4va.example.com

Staging: https://api-staging.l4va.example.com

Production: https://api.l4va.example.com

All endpoints require API key authentication using the X-API-Key header.

All endpoints follow a consistent response format:

All state-changing operations return transaction hashes
Wallet signatures required for sensitive operations
Real-time updates available via WebSocket connections

TBD: Provide a Postman Collection

Getting Started

Environment URLs

Authentication

Response Format

{
 "status": "success|error",
 "data": {}, // Response payload
 "error": {} // Present only on errors
}

Blockchain Integration

Postman Collection

https://api-dev.l4va.example.com
https://api-staging.l4va.example.com
https://api.l4va.example.com

Creates a new vault with specified configuration.

Vault Formation

Create Vault

Endpoint
POST /api/v1/vaults

Sample Request
{
 "vault_name": "Example Vault",
 "vault_type": "public",
 "privacy_type": "semi-private",
 "admin_user": {
 "wallet_address": "addr1q9example123",
 "email": "admin@example.com"
 },
 "asset_settings": {
 "allowed_asset_types": ["NFT", "CNT"],
 "policy_ids": ["policy12345", "policy67890"],
 "valuation_type": "LBE",
 "floor_price_percentage": 90,
 "max_assets": 100
 },
 "investment_settings": {
 "investment_window_duration": "48h", // ISO-like duration
 "investment_start_time": "2024-11-24T10:00:00Z", // Optional; defaults to vault creation time
 "minimum_investment_reserve": 10.0,
 "ft_supply": 100000,
 "ft_token_decimals": 6,
 "lp_percentage": 10
 },
 "governance_settings": {
 "creation_threshold": 5,
 "start_threshold": 10,
 "vote_threshold": 50,
 "execution_threshold": 60,
 "cosigning_threshold": 3

Add assets during the asset window period.

 }
}

Sample Response (201: Created)
{
 "vault_id": "vault123",
 "vault_name": "Example Vault",
 "transaction": {
 "tx_hash": "b26f8c9a0d1a4a9b8b12f9f9a8c1234567e9d0f1c234567890abcdef",
 "status": "confirmed",
 "block_height": 1234567
 },
 "investment_window": {
 "duration": "48h",
 "start_time": "2024-11-24T10:00:00Z",
 "end_time": "2024-11-26T10:00:00Z"
 },
 "status": "created",
 "created_at": "2024-11-23T10:00:00Z"
}

Add Assets to Vault

HTTP Request
POST /api/v1/vaults/{vaultId}/assets

Sample Request
{
 "policy_id": "policy12345",
 "asset_name": "ExampleAsset",
 "valuation_method": "floor_price",
 "metadata": {
 "creator": "CreatorAddress",
 "legal_proof": "https://proof.example.com/doc.pdf"
 }
}

Remove assets during the asset window period. Will fail if attempted before or after the window period.

Sample Response (201: Created)
{
 "vault_id": "vault123",
 "asset_id": "asset456",
 "transaction": {
 "tx_hash": "a92f81e3b69c4d12b34c567890fabcde1234567890abcdef56789abc",
 "status": "confirmed",
 "block_height": 1234570
 },
 "status": "added",
 "valuation": {
 "method": "floor_price",
 "value": 1000000
 },
 "created_at": "2024-11-23T11:00:00Z"
}

Remove Asset

Endpoint
DELETE /api/v1/vaults/{vaultId}/assets/{assetId}

Sample Response
{
 "status": "success",
 "data": {
 "assetId": "asset_123",
 "removalStatus": "COMPLETED",
 "transactionHash": "tx_hash789...",
 "updatedValuation": {
 "total": "140000",
 "timestamp": "2024-12-01T01:35:00Z"
 }
 }
}

Calculate current vault valuation based on assets.

List all assets in the vault.

Get Vault Valuation

HTTP Request
GET /api/v1/vaults/{vaultId}/valuation

Sample Response
{
 "status": "success",
 "data": {
 "valuation": {
 "total": "150000",
 "breakdown": {
 "nftValue": "120000",
 "cntValue": "30000"
 },
 "assetCounts": {
 "nfts": 2,
 "cnts": 1
 },
 "timestamp": "2024-12-01T01:30:00Z"
 }
 }
}

List Vault Assets

HTTP Request
GET /api/v1/vaults/{vaultId}/assets

Sample Response
{
 "status": "success",
 "data": {
 "assets": [{

Updates the list of wallets allowed to participate in the vault, and their type.

 "assetId": "asset_123",
 "type": "NFT",
 "contractAddress": "addr_nft123...",
 "tokenId": "42",
 "addedAt": "2024-12-01T01:00:00Z",
 "status": "LOCKED",
 "currentValue": "90000"
 }],
 "pagination": {
 "page": 1,
 "limit": 20,
 "total": 45
 }
 }
}

Update Vault AllowList

HTTP Request
PATCH /api/v1/vaults/{vaultId}/allowlist

Sample Request
{
 "type": "ASSET|CONTRIBUTOR|INVESTOR",
 "operation": "ADD|REMOVE",
 "addresses": ["addr1...", "addr2..."]
}

Sample Response
{
 "status": "success",
 "data": {
 "updatedAllowList": {
 "type": "ASSET",
 "count": 24,
 "lastUpdated": "2024-12-01T02:00:00Z"

Returns some vault performance metrics.

Returns a vault activity log.

 }
 }
}

Vaut Performance Metrics

HTTP Request
GET /api/v1/vaults/{vaultId}/metrics

Sample Response
{
 "status": "success",
 "data": {
 "valuation": {
 "initial": "100000",
 "current": "150000",
 "change": "50.00"
 },
 "participation": {
 "uniqueVoters": 45,
 "averageQuorum": "68.00",
 "proposalCount": 12
 },
 "timeline": {
 "created": "2024-11-20T10:00:00Z",
 "locked": "2024-12-01T02:00:00Z",
 "age": "11d 16h"
 }
 }
}

Vault Activity

HTTP Request
GET /api/v1/vaults/{vaultId}/activity

Lets you update modifiable vault settings.

This would return the standard Success/Fail response object.

Sample Response
{
 "status": "success",
 "data": {
 "activities": [{
 "type": "ASSET_ADDED|PROPOSAL_CREATED|VOTE_CAST",
 "timestamp": "2024-12-01T01:00:00Z",
 "actor": "addr_user123...",
 "details": {},
 "transactionHash": "tx_hash123..."
 }],
 "pagination": {
 "page": 1,
 "limit": 20,
 "total": 156
 }
 }
}

Update Vault Settings

Sample Request
{
 "investorAllowList": {
 "enabled": true,
 "addresses": ["addr1..."]
 },
 "valuationType": "LBE",
 "termination": {
 "fdp": "12.00"
 }
}

Create a new governance proposal.

Governance

Proposal Management

HTTP Request
POST /api/v1/vaults/{vaultId}/proposals

Sample Request
{
 "proposer": "user_wallet123",
 "proposal_details": {
 "title": "Liquidate Asset A",
 "description": "Sell asset A for 90% of its floor price.",
 "action_type": "sell_asset",
 "affected_assets": [
 {
 "policy_id": "policy12345",
 "asset_name": "ExampleAsset"
 }
]
 },
 "governance_thresholds": {
 "creation_threshold": 5,
 "start_threshold": 10,
 "vote_threshold": 50,
 "execution_threshold": 60
 }
}

Sample Response (201: Created)
{
 "vault_id": "vault123",
 "proposal_id": "proposal789",
 "transaction": {
 "tx_hash": "de1234abc567890def1234567890abcdef1234567890abcdef12345678",
 "status": "confirmed",

Submit a vote on a proposal.

 "block_height": 1234575
 },
 "status": "created",
 "thresholds_met": {
 "creation_threshold": true
 },
 "created_at": "2024-11-23T12:00:00Z"
}

Submit Vote

HTTP Request
POST /api/v1/proposals/{proposalId}/votes

Sample Request
{
 "voter": {
 "wallet_address": "addr1q9voter123",
 "staked_ft_amount": 1000
 },
 "vote": "yes"
}

Sample Response (200: OK)
{
 "vault_id": "vault123",
 "proposal_id": "proposal789",
 "voter": "addr1q9voter123",
 "transaction": {
 "tx_hash": "ab567890abcdef1234567890abcdef1234567890abcdef1234567890",
 "status": "confirmed",
 "block_height": 1234580
 },
 "vote": "yes",
 "staked_ft_amount": 1000,
 "status": "vote_recorded",

Execute an approved proposal.

 "updated_at": "2024-11-23T13:00:00Z"
}

Execute Proposal

Endpoint
POST /api/v1/proposals/{proposalId}/execute

Sample Request
{
 "executing_user": "user_wallet123",
 "cosigners": [
 "wallet_cosigner1",
 "wallet_cosigner2"
],
 "action": {
 "type": "sell_asset",
 "details": {
 "policy_id": "policy12345",
 "asset_name": "ExampleAsset",
 "price": 900000
 }
 }
}

Sample Response (200: OK)
{
 "vault_id": "vault123",
 "proposal_id": "proposal789",
 "transaction": {
 "tx_hash": "cd1234567890abcdef1234567890abcdef1234567890abcdef123456",
 "status": "confirmed",
 "block_height": 1234585
 },
 "status": "executed",
 "executed_by": "user_wallet123",

 "cosigners": [
 "wallet_cosigner1",
 "wallet_cosigner2"
],
 "action": {
 "type": "sell_asset",
 "details": {
 "policy_id": "policy12345",
 "asset_name": "ExampleAsset",
 "price": 900000
 }
 },
 "executed_at": "2024-11-23T14:00:00Z"
}

This guide is a walkthrough on how to implement the message signing described in CIP-08 in order to

authenticate users on the web with just their CIP-30-compatible wallet app:

https://developers.cardano.org/docs/integrate-cardano/user-wallet-authentication/

However while it is useful to study the above, in order to simplify and standardize our platform, we're going to use
a multi-chain wrapper library instead (see next section).

We're going to use this library to integrate with Cardano wallets:

https://github.com/Cardano-Forge/weld

Weld lets you manage wallet connections across multiple blockchains using a single intuitive interface.

In a Web3 app using wallets like Nami or Vespr, authentication typically works through wallet-based signature
verification. Here’s a simplified flow:

1. Connect Wallet: The user connects their wallet to the Web3 app. The wallet extension (like
Nami or Vespr) interfaces with the app to allow interactions.

2. Generate Nonce: The app generates a unique, random string (nonce) and sends it to the
wallet for the user to sign. This ensures that each authentication request is unique and
prevents replay attacks.

3. Sign Nonce: The user signs the nonce using their private key in the wallet. This signature
doesn’t expose the private key but proves ownership of the wallet.

4. Verify Signature: The app receives the signed nonce and verifies it using the user’s public
key (derived from their wallet address). If the signature is valid, it confirms the user controls
the wallet.

5. Authenticate User: Once verified, the app logs in the user and associates their wallet
address with their session or profile. The wallet address often serves as the unique user
identifier.

6. Session Management: The app can use cookies, tokens (like JWTs), or smart contract
events to manage sessions while interacting with the blockchain.

This method ensures secure, decentralized authentication without traditional usernames or passwords. Wallets
like Nami and Vespr streamline this process by providing user-friendly interfaces for signing and verifying data.

We'll be testing with both those wallets, and the screenshots you're going to see in the documentation will be
from one of those two wallets (and especially on mobile phones, with Vespr).

Wallet Integration

About CIP-08 and CIP-30

Using Weld

How Authentication works

https://cips.cardano.org/cip/CIP-0008
https://cips.cardano.org/cip/CIP-0030
https://developers.cardano.org/docs/integrate-cardano/user-wallet-authentication/
https://github.com/Cardano-Forge/weld

This diagram explains how this API backend interacts with the blockchain and the L4VA Smart Contracts

Swim Lane Diagram

